Article ID Journal Published Year Pages File Type
1526104 Materials Chemistry and Physics 2009 7 Pages PDF
Abstract

A meso-macroporous TiO2 film electrode was fabricated by using mesoporous TiO2 (m-TiO2) nanoparticles through a screen-printing technique in order to efficiently control the main fabrication step of dye-sensitized solar cells (DSSCs). The qualities of the screen-printed m-TiO2 films were characterized by means of spectroscopy, electron microscopy, nitrogen adsorption–desorption and photoelectrochemical measurements. Under the optimal paste composition and printing conditions, the DSSC based on the meso-macroporous m-TiO2 film electrode exhibits an energy conversion efficiency of 4.14%, which is improved by 1.70% in comparison with DSSC made with commercially available nonporous TiO2 nanoparticles (P25, Degussa) electrode printed with a similar paste composition. The meso-macroporous structure within the m-TiO2 film is of great benefit to the dye adsorption, light absorption and the electrolyte transportation, and then to the improvement of the overall energy conversion efficiency of DSSC.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , ,