Article ID Journal Published Year Pages File Type
1526729 Materials Chemistry and Physics 2008 5 Pages PDF
Abstract

Ultrafine alumina powder was prepared through resin formation between urea and formaldehyde. Aluminium stearate soap was introduced during resin preparation. Ethylene glycol was used to terminate the thermosetting reaction. Calcination of the product was carried out at 700, 1000, 1100, 1300 and 1400 °C to obtain aluminium oxide.IR and Raman spectroscopic analysis indicated the occupation of Al3+ at different sites in the polymer network (CO, NH2, CO, NH, and CH2OH).X-ray diffraction of powder calcined at 1000 °C revealed the presence of a mixture of α- and θ-alumina together, while a mixture of α- and β-alumina phases were obtained on calcination at 1400 °C. Transmission electron microscope (TEM) examination of the powder fired at 700 °C showed uniform grains in the form of clusters with average size between 22.02 and 30.5 nm. Clusters are multi-particles as evident from the electron diffraction pattern. Crystallite size of alumina powder calcined at 1000 °C was found to be ≈25.67 nm, while that of powder calcined at1400 °C was ≈30.52 nm. The calculated specific surface area of alumina powder calcined at 1000 °C was 59.17 m2 g−1, while that calcined at 1400 °C was 49.77 m2 g−1.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,