Article ID Journal Published Year Pages File Type
1527429 Materials Chemistry and Physics 2007 4 Pages PDF
Abstract

A coal tar pitch-derived carbonaceous mesophase (CM) was treated in a high-energy ball mill apparatus. The structures for the raw and the as-milled CMs were characterized by X-ray diffraction and laser-Raman spectroscopic techniques, and the frictional behaviors for the CMs were investigated by using a SRV high temperature friction and wear tester. The results have shown that, high-energy ball milling leads to a drop in the crystallinity of the CMs and a decrease in the size of graphite planar micro-crystals, implying a higher structural amorphism caused by the high-energy ball milling. In addition, the CMs display a high temperature lubrication effect. High-energy ball milling is supposed to be beneficial to the graphitization of the CMs induced by friction mechanical action, and, therefore, facilitate the high temperature lubrication effect to some extent.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,