Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1527560 | Materials Chemistry and Physics | 2006 | 4 Pages |
Abstract
The effect of sintering condition on the phase composition, microstructure and dielectric properties of barium strontium titanate niobate (BSTN) composite ceramics, in which the perovskite phase and the tungsten bronze phase coexisted, was investigated by XRD, SEM and LCZ Meter. The results show that more Sr2+ ions dissolved from the grain boundaries into the crystal lattice of the pervoskite phase and the tungsten bronze phase, especially, into the lattice of the pervoskite phase with the increasing of sintering temperature and sintering time, respectively. So the Curie temperature point decreases with the increasing of sintering temperature. The crystal growth rate of the tungsten bronze phase is higher than that of the perovskite phase in BSTN composite ceramics as the sintering temperature increases. The reasonable sintering temperature is about 1275 °C for BSTN composite ceramics. The activation energy to setting up polarization in BSTN composite ceramics increases with the increase of the applied frequency.
Related Topics
Physical Sciences and Engineering
Materials Science
Electronic, Optical and Magnetic Materials
Authors
Zonghui Zhou, Xin Cheng, Piyi Du,