Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1529280 | Materials Science and Engineering: B | 2012 | 6 Pages |
A method of in situ integrating carbon nanotubes (CNTs) into activated carbon (AC) matrix was developed to improve the performance of AC as a supercapacitor electrode. Glucose solution containing pre-dispersed CNTs was hydrothermally carbonized to be a char-like intermediate product, and finally converted into a “tube-in-AC” structure by the chemical activation using KOH. The “tube-in-AC” composite had oxygen content of 12.98 wt%, specific surface area of 1626 m2/g and 90% of 1–2 nm micropores. It exhibited capacitance of 378 F/g in the aqueous KOH electrolyte and excellent cyclibility under high current, that is, the capacitance only decreased 4.6% after 2000 cycles at scanning rate of 100 mV/s. These performances of “tube-in-AC” electrode are better than those of commercial AC electrodes, post-mixed with CNTs or carbon black.
► Hydrothermal carbonization method to prepare “tube-in-activated carbon” composite. ► Due to high specific surface area, suitable pore size and low electrical resistance. ► It exhibited high capacitance value and excellent cyclibility for supercapacitor.