Article ID Journal Published Year Pages File Type
1529308 Materials Science and Engineering: B 2011 6 Pages PDF
Abstract

Three-dimensional (3D) supercapacitors consisting of Ba0.65Sr0.35TiO3 (BST)/NiSi2/silicon microchannel plate (MCP) stacked structure have been fabricated. The silicon MCP produced by electrochemical etching is utilized as a backbone of the 3D structure on which a nickel silicide current collector layer and Ba0.65Sr0.35TiO3 dielectric layer are deposited successively by electroless plating and the sol–gel method, respectively. The morphology and structure of the 3D BST/NiSi2/Si-MCP structure are characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) and the electrochemical properties are determined by cyclic voltammetry (CV) and chronopotentiometry. The structure exhibits excellent capacitive behavior with a maximum capacitance of 784 F g−1. After 700 charging/discharging cycles, the Cf decreases slightly with only a 5.7% loss and is stable after more than 700 cycles. The BST/NiSi2/Si-MCP 3D structure is a potential supercapacitor in industrial applications.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , , , ,