Article ID Journal Published Year Pages File Type
1529347 Materials Science and Engineering: B 2010 6 Pages PDF
Abstract

The hybrid nanocomposites of titanium dioxide nanoparticle (TNP) and copper phthalocyanine (CuPc) were successfully synthesized by low-energy ball milling as a main part of synthesis and processing via three different methods without additional heating. Structural properties of as-prepared composites were well characterized by X-ray diffraction, Raman spectroscopy, Field Emission-Scanning Electron Microscopy and Transmission Electron Microscopy. TNP/CuPc hybrid nanocomposites acting as photocatalyst were used as a modified working electrode materials in dye-sensitized solar cells. Among all prepared conditions, the composite with 0.05 wt.% CuPc prepared by homogenization and ball milling process exhibited the best performance with optimized solar energy conversion efficiency of 1.24% with fill factor of 0.45. The significant enhancement of current density of the device may be associated to the decrease of recombination of photo-injected electrons and reduction of charge transfer resistances at the interface caused by the presence of CuPc on TNP matrix.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,