Article ID Journal Published Year Pages File Type
1529715 Materials Science and Engineering: B 2011 6 Pages PDF
Abstract

Hydrogen storage and electrical properties of different hyperbranched polymer systems beside a nanocomposite are studied. The polymers examined are aliphatic hyperbranched poly urea (P-Urea), polyamide amine (PAMAM) and polyamide amine/vanadium oxide (PAMAM/VOx) nanocomposite. At 80 K and up to 20 bar hydrogen pressure, the hydrogen storage capacity of hyperbranched P-Urea reached 1.6 wt%, 0.9 wt% in case of PAMAM and 0.6 wt% for VOx. The hydrogen storage capacity significantly enhanced when PAMAM and VOx form a nanocomposite and increased up to 2 wt%. At 298 K and up to 20 bar, all the samples did not show measurable hydrogen uptake. Electrical properties of the samples are also investigated; the measurements showed complete insulating behavior at hydrogenation measuring temperature. These investigations ensure that the polymer conductivity does not play a role in hydrogen uptake, also hyperbranched polymers are promising materials for hydrogen storage.

• The hydrogen storage capacity of hyperbranched P-Urea, PAMAM and PAMAM and VOx is studied and electrical properties of the samples are also investigated; the measurements showed complete insulating behavior at hydrogenation measuring temperature. These investigations ensure that the polymer conductivity does not play a role in hydrogen uptake, also hyperbranched polymers are promising materials for hydrogen storage. • Electrical properties measurements for the samples showed complete insulating behavior at hydrogenation measuring temperature. • These investigations ensure that the polymer conductivity does not play a role in hydrogen uptake, also hyperbranched polymers are promising materials for hydrogen storage.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,