Article ID Journal Published Year Pages File Type
1529742 Materials Science and Engineering: B 2010 5 Pages PDF
Abstract

ZnO nanoparticles with a pure wurtzite structure have been successfully synthesized through decomposing bacterial cellulose infiltrated with zinc acetate aqueous solution at high temperature. The effects of the concentration of zinc acetate aqueous solution, the calcination temperature, and the templates on the average particle size and morphology of the ZnO nanoparticles were investigated. The prepared ZnO nanoparticles were characterized by FESEM, XRD, FTIR and TG–DTA. The results suggest that bacterial cellulose plays an important role in preventing the ZnO nanoparticles from aggregating under optimized conditions. The calcination temperature has great effects on the morphologies of ZnO nanoparticles. When calcinating at 600 °C and using BC as the template with 1 wt.% zinc acetate aqueous solution, well-dispersed and regular ZnO nanoparticles with a narrow size distribution of 20–50 nm and high photocatalytic activity were obtained.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,