Article ID Journal Published Year Pages File Type
1529794 Materials Science and Engineering: B 2011 5 Pages PDF
Abstract

Silicon carbide (SiC) nanowires were fabricated in a large quantity by a rapid heating carbothermal reduction of a novel resorcinol-formaldehyde (RF)/SiO2 hybrid aerogel in this study. SiC nanowires were grown at 1500 °C for 2 h in an argon atmosphere without any catalyst via vapor–solid (V–S) process. The β-SiC nanowires were characterized by field-emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM) equipped with energy dispersive X-ray (EDX) facility, Fourier transformed infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The analysis results show that the aspect ratio of the SiC nanowires via the rapid heating process is much larger than that of the sample produced via gradual heating process. The SiC nanowires are single crystalline β-SiC phase with diameters of about 20–80 nm and lengths of about several tens of micrometers, growing along the [1 1 1] direction with a fringe spacing of 0.25 nm. The role of the interpenetrating network of RF/SiO2 hybrid aerogel in the carbothermal reduction was discussed and the possible growth mechanism of the nanowires is analyzed.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,