Article ID Journal Published Year Pages File Type
1530041 Materials Science and Engineering: B 2010 5 Pages PDF
Abstract

X-ray diffraction and reflectivity, X-ray photoelectron spectroscopy and spectroscopic ellipsometry were applied to study the initial composition, thickness, lattice structure and refractive index of ‘fresh’ and annealed thin SiOx films (∼15 nm) on crystalline silicon substrates, prepared by thermal evaporation of SiO in vacuum. It has been ascertained that the film thickness and composition (x = 1.3) of the ‘fresh’ films are very close to the values set during the deposition. It has been shown that furnace annealing of the films at 1000 °C causes phase separation, film densification and small modification of the Si–SiOx interface. Transmission electron microscopy results have proven that a self-assembling process leads to formation of Si nanocrystals with a diameter of ∼4–5 nm and to epitaxial overgrowth of the Si substrate, increasing the c-Si/SiOx interface transition region to 6–7 monolayers. The nanocrystals are randomly distributed in an amorphous SiO2 matrix being closer to the Si–SiOx interface. Formation of tunnel oxide layer with a thickness of 3–5 nm has been found upon annealing. Clockwise hysteresis has been observed in the capacitance-voltage characteristics measured which has been explained by assuming charging and discharging of the nanocrystals with holes, which tunnel from the Si substrate.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , , , , , ,