Article ID Journal Published Year Pages File Type
1530126 Materials Science and Engineering: B 2010 7 Pages PDF
Abstract

The effect of SrO addition on the thermal stabilization of transition aluminas with the aim of producing membrane layers (supported and unsupported) has been investigated. Al2O3–x wt.% SrO composite powders (x = 1, 3, 5, 8) were synthesized by co-precipitation of the hydroxides from solutions of AlCl3 and Sr(NO3)2 salts using NH4OH as a precipitating agent. Optimum SrO dopant concentration regarding the transition aluminas stabilization effect was determined to be 5 wt.% based on XRD analysis. STA analysis showed a 30 °C shift versus higher temperatures in the transformation of final transitional alumina (θ-Al2O3) to stable alpha phase due to addition of 5 wt.% SrO. The mechanism of transition aluminas thermal stabilization as a result of SrO addition is thoroughly discussed. Unsupported alumina membranes were prepared by drying boehmite sols at 600, 800, 1000 and 1100 °C. The effect of calcination temperature on surface area, pore size distribution of unsupported membranes containing 5 wt.% SrO has been investigated. The microstructure of unsupported and supported membranes revealed quite different. Smaller grains in the supported layers were attributed to the interaction between support and membrane.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,