Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1530234 | Materials Science and Engineering: B | 2010 | 4 Pages |
An ethanol gas sensor was fabricated based on Ti doped ZnO nanotetrapods which were prepared by chemical vapor deposition (CVD) of ZnO nanotetrapods followed by co-annealing with TiO2 powder. X-ray diffraction (XRD), Raman spectra and scanning electron microscopy (SEM) were used to characterize the morphology and structure of the as-obtained sample and the ethanol-sensing characteristics of the device were investigated. ZnO:Ti sensors show higher gas response than ZnO counterparts towards 100 ppm ethanol gas at a temperature of 260 °C. The recovery times of the devices are 3.1 min for ZnO:Ti and 10.1 min for ZnO, respectively. The enhancement of sensing properties of ZnO:Ti tetrapods indicates the potential application for fabricating low power and highly sensitive gas sensors.