Article ID Journal Published Year Pages File Type
1531092 Materials Science and Engineering: B 2008 4 Pages PDF
Abstract
The detailed knowledge of the effects of the buried interface on defect evolution in silicon-on-insulator wafers is mandatory to accurately control dopant diffusion and activation. To be able to study this phenomenon, quantitative data on end-of-range defect evolution must be obtained taking into account the several possible effects of the buried interface. In this work we report some transmission electron microscopy data acquired to study the effect of the Si top layer/buried oxide interface acting as an interstitial sink in silicon-on-insulator wafers. It is shown that this effect can explain the obtained data and that our results are compatible with a non-conservative Ostwald ripening mechanism describing defect evolution in silicon-on-insulator structures.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , , ,