Article ID Journal Published Year Pages File Type
1531230 Materials Science and Engineering: B 2008 5 Pages PDF
Abstract

Static/structural characteristics of non-covalent complexes, formed by terminally charged hyperbranched polymers and oppositely charged neutralizing linear polyelectrolytes, are examined by means of Brownian dynamics computer simulations. Excluded-volume, electrostatic and hydrodynamic interactions are taken into account in implicit solvent. Three pairs of complexes consisting of linear chains and hyperbranched molecules each bearing different molecular weight and distinctly diverse topologies are examined under conditions of varying electrostatic interactions. The findings from the present work demonstrate that through an appropriate modification of internal structure and external stimuli, key attributes of such complexes like size, shape and local density distribution, can be tuned at desired levels, rendering them promising candidates for a wide range of pertinent nanoscale applications.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,