Article ID Journal Published Year Pages File Type
1531807 Materials Science and Engineering: B 2006 7 Pages PDF
Abstract
We carried out sub-Kelvin ultrasonic measurements for observation of vacancies in crystalline silicon. The longitudinal elastic constants of non-doped and B-doped floating zone (FZ) silicon crystals in commercial base revealed low-temperature elastic softening below 20 K. The applied magnetic fields turns the softening of the B-doped FZ silicon to a temperature-independent behavior, while the fields up to 16 T at base temperature 20 mK make no effect on the softening of the non-doped FZ silicon. This result means that the vacancy accompanying the non-magnetic charge state V0 in the non-doped silicon and the magnetic V+ in the B-doped silicon is responsible for the low-temperature softening through the Jahn-Teller effect. The direct observation of the vacancy using the sub-Kelvin ultrasonic measurements advances point defects controlling in silicon wafers and semiconductor devices.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , ,