Article ID Journal Published Year Pages File Type
1532423 Materials Science and Engineering: R: Reports 2013 62 Pages PDF
Abstract
Shear-banding is a ubiquitous plastic-deformation mode in materials. In metallic glasses, shear bands are particularly important as they play the decisive role in controlling plasticity and failure at room temperature. While there have been several reviews on the general mechanical properties of metallic glasses, a pressing need remains for an overview focused exclusively on shear bands, which have received tremendous attention in the past several years. This article attempts to provide a comprehensive and up-to-date review on the rapid progress achieved very recently on this subject. We describe the shear bands from the inside out, and treat key materials-science issues of general interest, including the initiation of shear localization starting from shear transformations, the temperature and velocity reached in the propagating or sliding band, the structural evolution inside the shear-band material, and the parameters that strongly influence shear-banding. Several new discoveries and concepts, such as stick-slip cold shear-banding and strength/plasticity enhancement at sub-micrometer sample sizes, will also be highlighted. The understanding built-up from these accounts will be used to explain the successful control of shear bands achieved so far in the laboratory. The review also identifies a number of key remaining questions to be answered, and presents an outlook for the field.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,