Article ID Journal Published Year Pages File Type
1533003 Optics Communications 2016 6 Pages PDF
Abstract
A direct-detection Brillouin optical time-domain reflectometry (BOTDR) using an up-conversion photon-counting detector and an all-fiber structure Fabry-Perot scanning interferometer is demonstrated with shot-noise limited performance. Taking advantage of ultra-low noise equivalent power of the up-conversion photon-counting detector and high spectral resolution of the interferometer, the Brillouin spectra along a polarization maintaining fiber (PMF) are analyzed in the optical frequency domain directly. In contrast with heterodyne BOTDR, photon-counting BOTDR has better EM compatibility and faster speed in data processing. In experiments, using peak input power of 20 dBm, temperature profile along a 9 km PMF is retrieved according to the Brillouin shifts, with spatial/temporal resolution of 2 m/15 s. The precision is 0.7 °C at the leading end and 1.2 °C at the trailing end.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , , , , ,