Article ID Journal Published Year Pages File Type
1533056 Optics Communications 2016 5 Pages PDF
Abstract
We propose a design method for all-optical multi-level regenerators by mimicking the normalized power transfer function (PTF) in the first-order approximation to the ideal step-like PTF, in which a key step is to appropriately select the amplitude and phase conditions of Mach-Zehnder-interferometer (MZI)-based regenerators. As an example, we describe the design process of the self-phase-modulation (SPM)-based MZI regenerator constructed by a section of nonlinear fiber and an optical phase shifter (OPS). It is shown that the parameter of reference power level (RPL) can be regarded as the upper limit of input power, which is useful for the measure of the multi-level regeneration performance. The number of regenerative power levels increases with the RPL parameter. For 4-level pulse amplitude modulated (4PAM) optical signals degraded by the Gaussian noises with the standard deviation of 0.02, the SPM-based MZI regenerator has an average noise reduction ratio (NRR) of 6.5 dB, better than that of 1st-order regenerator by about 5 dB.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , ,