Article ID Journal Published Year Pages File Type
1533068 Optics Communications 2016 8 Pages PDF
Abstract
A novel (to our knowledge) type of single-polarization (SP) coupler based on a dual-core photonic band-gap fiber (PBF) is proposed. The effects of structure parameters on the performance of this coupler are studied numerically based on the full vector finite element method (FEM). Finally, an optimal design with a length of 0.377 mm at the wavelength of 1.55 µm is achieved, and its implication in PBF-based fiber ring resonator (FRR), the effect of angular misalignment on the SP coupler are analyzed as well. When the SP coupler is incorporated into a PBF-based FRR, it functions as the power splitter and the polarizer simultaneously, and can extinct the secondary eigenstate of polarization (ESOP) propagating in the FRR. The mode field of SP coupler can match with the polarization-maintaining (PM) PBF with ultra-low temperature sensitivity proposed in previous study, and an all PM-PBF based FRR can be established, which is of great significance in suppressing the temperature-related polarization fluctuation and improving the long-term stability for RFOG, and the SP coupler has high angular misalignment tolerance as well.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , ,