Article ID Journal Published Year Pages File Type
1533195 Optics Communications 2016 11 Pages PDF
Abstract
A novel particle swarm optimization algorithm based on adaptive inertia weight and chaos optimization is proposed for extracting the features of Brillouin scattering spectra. Firstly, the adaptive inertia weight parameter of the velocity is introduced to the basic particle swarm algorithm. Based on the current iteration number of particles and the adaptation value, the algorithm can change the weight coefficient and adjust the iteration speed of searching space for particles, so the local optimization ability can be enhanced. Secondly, the logical self-mapping chaotic search is carried out by using the chaos optimization in particle swarm optimization algorithm, which makes the particle swarm optimization algorithm jump out of local optimum. The novel algorithm is compared with finite element analysis-Levenberg Marquardt algorithm, particle swarm optimization-Levenberg Marquardt algorithm and particle swarm optimization algorithm by changing the linewidth, the signal-to-noise ratio and the linear weight ratio of Brillouin scattering spectra. Then the algorithm is applied to the feature extraction of Brillouin scattering spectra in different temperatures. The simulation analysis and experimental results show that this algorithm has a high fitting degree and small Brillouin frequency shift error for different linewidth, SNR and linear weight ratio. Therefore, this algorithm can be applied to the distributed optical fiber sensing system based on Brillouin optical time domain reflection, which can effectively improve the accuracy of Brillouin frequency shift extraction.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,