Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1533365 | Optics Communications | 2016 | 7 Pages |
Abstract
A prism based dual mode SPR sensor was theoretically modeled to work as a self-referenced sensor in spectral interrogation scheme. Self-referenced sensing was achieved by sandwiching an indium tin oxide thin film in between the prism base and the metal layer. The proposed sensor possesses two plasmon modes similar to long and short range SPRs (LR- and SR-SPRs) and we have analogically used LRSPR and SRSPR for them. However, these modes do not possess usual long range character due to the losses introduced by the imaginary part of indium tin oxide (ITO) dielectric function. One of the two plasmon modes responds to change in analyte refractive index while the other remains fixed. The influence of various design parameters on the performance of the sensor was evaluated. The performance of the proposed sensor was compared, via control simulations, with established dual mode geometries utilizing silicon dioxide (SiO2), Teflon AF-1600 and Cytop. The design parameters of the established geometries were optimized to obtain self-referenced sensing operation. Trade-offs between the resonance spectral width, minimum reflectivity, shift in resonance wavelength and angle of incidence were examined for optimal design. The present study will be useful in the fabrication of self-referenced sensors where the ambient conditions are not quite stable.
Related Topics
Physical Sciences and Engineering
Materials Science
Electronic, Optical and Magnetic Materials
Authors
Sachin K. Srivastava, Roli Verma, Banshi D. Gupta,