Article ID Journal Published Year Pages File Type
1533569 Optics Communications 2015 17 Pages PDF
Abstract
A novel gyrator wavelet transform based non-linear multiple single channel information fusion and authentication is introduced. In this technique, each user channel is normalized, phase encoded, and modulated by random phase function, and then multiplexed into a single channel user ciphertext. Now, the secret channel of corresponding user is phase encoded, modulated by random phase function, and gyrator transformed, and then multiplexed into a single channel secret ciphertext. The user ciphertext and secret ciphertext are multiplied to get a single channel multiplex image and then inverse gyrator transformed. The resultant spectrum is phase- and amplitude-truncated to obtain the encrypted image and the asymmetric key, respectively. The encrypted image is a single-level 2-D discrete wavelet transformed. The information is decomposed into LL, HL, LH, and HH sub-bands. This process is repeated to obtain three sets of four sub-bands of three different images. Next, the individual sub-band of each encrypted image is fused to get four fused sub-bands. Finally, the four fused sub-bands are inverse single-level 2-D discrete wavelet transformed to obtain final encrypted image. This is the main advantage for the proposed system: using multiple individual decryption keys (authentication key, asymmetric key, secret keys, and sub-band keys) for each user not only expands the key spaces but also supplies non-linear keys to control the system security. Moreover, the orders of gyrator transform provide extra degrees of freedom. The theoretical analysis and numerical simulation results support the proposed method.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
,