Article ID Journal Published Year Pages File Type
1533629 Optics Communications 2015 5 Pages PDF
Abstract
A metal-loaded graphene surface plasmon waveguide composed of a thin silica layer sandwiched between a graphene layer and a metal stripe is proposed and the waveguiding properties in the THz regime are numerically investigated. The results show that the fundamental mode of the proposed waveguide is tightly confined in the middle silica layer with an acceptable propagation loss. Compared with most other graphene waveguides proposed in the literature, the realization of this waveguide does not need to pattern or deform the graphene layer, thus retaining the superior properties of bulk graphene material. The tight modal confinement and the ease of fabrication suggest the high potential use of this waveguide in high-density THz photonic integration.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,