Article ID Journal Published Year Pages File Type
1533743 Optics Communications 2015 11 Pages PDF
Abstract
In this paper we address the analytical solution of the non-resonant interaction between two identical V-type three-level atoms passing consecutively through a single-mode cavity field in the presence of intensity-dependent coupling. By considering an identical initial condition for both atoms and an initial coherent field, we find the analytical solution of the state vector of the entire atom-field system. Accordingly, we could carefully investigate the influence of various parameters in the circumstances of the interacting system on different physical quantities such as the atomic population inversion, atom-field entanglement, field squeezing, sub-Poissonian statistics and the Wigner quasi-probability distribution function. In detail, we discuss numerically the influences of the detuning parameters and a particular nonlinearity function on the mentioned quantities and demonstrate that they have substantial effects on the temporal behavior of the above-mentioned non-classical properties.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,