Article ID Journal Published Year Pages File Type
1533959 Optics Communications 2015 8 Pages PDF
Abstract

•A linearized single-sideband modulator is proposed.•It is suitable for multi-octave broadband microwave photonic links.•The effect of dispersion on the linearization performance is investigated.

A novel linearized single-sideband modulator is proposed and demonstrated to generate optical single-sideband (OSSB) signal and improve the dynamic range of microwave photonic links. The modulator is composed of a dual-electrode Mach–Zehnder modulator (DEMZM) lying on the top branch and a phase shifter (PS) lying on the bottom branch. By optimizing the optical power split ratio of the linearized modulator and the phase shift of the PS, the third-order inter-modulation distortion (IMD3) can be efficiently suppressed while the second-order distortion components are eliminated simultaneously. It is a multi-octave linearization technique which can be applied for broadband systems. Simulation results show that, the linearized modulator can provide a spurious-free dynamic range (SFDR) of 130 dB for a bandwidth of 1 Hz at the received optical power of 2 dBm assuming shot noise is the dominant noise contribution, which is 22 dB higher than the conventional DEMZM. The effects of the finite extinction ratio of modulator, the phase deviation of PS and the dispersion of fiber on the linearization performance are also investigated.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , ,