Article ID Journal Published Year Pages File Type
1534448 Optics Communications 2014 5 Pages PDF
Abstract
This study proposes an ultracompact and highly sensitive liquid-filled photonic crystal fiber Michelson interferometer (LF-PCFMI) based on material dispersion engineering. Numerical simulations and experimental measurements are performed in the work, and both of their results show that the temperature sensitivity can be more greatly improved than those of conventional photonic crystal fiber interferometers (PCFIs). The experimental results indicate that a very high sensitivity with interference wavelength shifts of almost 27 nm within temperature variation of 5 °C has been achieved by the configuration. Numerical analysis for the proposed LF-PCFMI also exhibits a good agreement with the results of the experimental measurements.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,