Article ID Journal Published Year Pages File Type
1534726 Optics Communications 2014 10 Pages PDF
Abstract

The modulated pyramid wavefront sensor is known for its high sensitivity and adjustable dynamic range. The need for mechanically moving parts in a modulated pyramid wavefront sensor can be overcome by using the recently proposed digital pyramid wavefront sensor. In this paper, a digital multi-faceted pyramid wavefront sensor is demonstrated with the use of a reflecting phase-only spatial light modulator. The four-pupil digital pyramid wavefront sensor with 4-facets is extended to 6 and 8-facets. It is noted from the experiments performed under identical low-noise conditions that the performance of the wavefront sensor in terms of the root mean square wavefront error remains nearly the same in cases of four, six and eight pupil configurations. Under the circumstances elucidated here, the results of simulations indicate that in the presence of scatter noise, the pyramid wavefront sensor with greater number of pupils could lead to an improvement over the standard four-pupil pyramid wavefront sensor. Noise from scattering makes the choice of optimal modulation radius critical while sensing in open-loop adaptive optics systems.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,