Article ID Journal Published Year Pages File Type
1534729 Optics Communications 2014 10 Pages PDF
Abstract
A novel single-channel color information security system based on LU decomposition in gyrator transform domains is proposed. The original color image to be encoded is separated into its red, green and blue channels. They are modulated by corresponding random phase functions and then independently Fourier transformed. The transformed images of red and green channels are multiplied and then inverse Fourier transformed. The resulting image is phase- and amplitude truncated to obtain an encrypted image and an asymmetric decryption key, respectively. The encrypted image is multiplied by transformed image of blue channel and then performed LU decomposition. Finally, L and U parts are individually gyrator transformed at different transformation angles, which can be assigned to two different authorized users. The proposed single-channel encryption system is more compact than conventional three-channel encryption systems. Additionally, the ciphertexts are not color images but they are gray images which have obscure properties. The presented LU form is asymmetric. The two transformation angles of GT, three decryption keys for three channels and one asymmetric decryption key significantly improve the security and robustness of the proposed method. The encryption system can be realized digitally or optically. Numerical simulations demonstrate the feasibility and effectiveness of the suggested algorithms.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
,