Article ID Journal Published Year Pages File Type
1535110 Optics Communications 2013 4 Pages PDF
Abstract

Electromagnetic radiation can be categorized into ionizing and non-ionizing varieties. To determine the mechanism how non-ionizing radiation affects biological cells, we analyzed the difference between its thermal and electromagnetic effects. Two-beam optical tweezers were designed to demonstrate that infrared radiation could enhance the cellular interaction between red blood cells by its electromagnetic nature. An IR spot in the optical tweezers was irradiated on two RBCs to polarize them and induce electromagnetic attraction, while the other focused visible spot was used to quantify the intensity of the intercellular interaction. It was found that 0.1 mW/μm2 infrared radiation was adequate to cause pN-scale interaction between a cell pair, which was only 1/1000 of the power density used in a CD-R drive. We then set up a model to describe how non-ionizing radiation affected a cell assembly by deriving electromagnetic micro-stress transverse to its propagation axis.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,