Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1535929 | Optics Communications | 2012 | 4 Pages |
We report the computational modeling of forward scattering phenomena arising in Au nanoparticles array near their localized surface plasmon resonance, which by producing a strong field enhancement effect on the substrate leads to higher optical absorption and, therefore, higher efficiencies of operation. Computational calculations indicate that the ultimate efficiency of an optimized silicon nanoholes (SiNH) array texture surface in combination with the surface and bottom-of-a-trench Au nanoparticles array described herein, is 39.67%, which compares favorably with the ultimate efficiency of 31.11% for an optimized silicon nanoholes array texture surface. Furthermore, the utilization of an optimized silicon nitride antireflection coating increases the ultimate efficiency to a promising value of 41.88%, while the utilization of a single-crystal silicon layer of thickness 2.8 μm will be instrumental in drastically reducing solar cell manufacturing cost.