Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1536109 | Optics Communications | 2012 | 6 Pages |
The Q-switched and mode-locked (QML) performance in a diode-pumped Nd:Lu0.2Y0.8VO4 laser with electro-optic (EO) modulator and GaAs saturaber absorber is investigated. In comparison with the solely passively QML laser with GaAs, the dual-loss-modulated QML laser with EO and GaAs can generate pulses with higher stability and shorter pulse width of Q-switched envelope, as well as higher pulse energy. At the repetition rate 1 kHz of EO, the pulse width of Q-switched pulse envelope has a compression of 89% and the pulse energy has an improvement of 24 times. The QML laser characteristics such as the pulse width, pulse peak power etc. have been measured for different small-signal transmittance (T0) of GaAs, different reflectivity (R) of output coupler and modulation frequencies of the EO modulator (fe). The highest peak power and the shortest pulse width of mode-locked pulses are obtained at fe = 1 kHz, R = 90% and T0 = 92.6%. By considering the influences of EO modulator, a developed rate equation model for the dual-loss-modulated QML laser with EO modulator and GaAs is proposed. The numerical solutions of the equations are in good agreement with the experimental results.