Article ID Journal Published Year Pages File Type
1536170 Optics Communications 2012 5 Pages PDF
Abstract

We study the propagation of mid-infrared surface plasmons on non-tapered and tapered two-wire transmission lines on Si and CaF2 substrates, the two materials representing substrates with large and small refractive index, respectively. A comparative numerical study predicts a larger effective wavelength and an increased propagation length (i.e. weaker damping) for the CaF2 substrate. By near-field microscopy we image the near-field distribution along the transmission lines and experimentally verify surface plasmon propagation. Amplitude- and phase-resolved near-field images of a non-tapered transmission line on CaF2 reveal a standing wave pattern caused by back-reflection of the surface plasmons at the open-ended transmission line. Calculated and experimental near-field images of tapered transmission lines on Si and CaF2 demonstrate that for both substrates the mid-IR surface plasmons are compressed when propagating along the taper. Importantly, the nanofocus at the taper apex yields a stronger local field enhancement for the low-refractive index substrate CaF2. We assign the more efficient nanofocusing on CaF2 to the weaker damping of the surface plasmons.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , , ,