Article ID Journal Published Year Pages File Type
1536310 Optics Communications 2012 5 Pages PDF
Abstract

In this paper we present multi-channel chirp measurements of wide-band sources, using a programmable Fourier-domain optical processor (FDOP) as a near-perfect linear frequency discriminator element followed by a fast photodiode and electrical sampling oscilloscope. The electric field of a 10.7 Gbit/s phase-encoded data source and a directly modulated laser diode are simultaneously interrogated with this measurement system. The constellation diagram of the phase-encoded data source is demonstrated, and a comparison with another phase-sensitive measurement technique is performed. Additionally, an extension to this technique is demonstrated in which the time-resolved chirp of a picosecond-duration mode-locked laser diode with a 260 GHz spectral bandwidth is characterised using the FDOP and a high-bandwidth optical sampling oscilloscope. This measurement ensemble has sufficient temporal resolution to characterise random or repetitive data signals up to 100GBaud.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,