Article ID Journal Published Year Pages File Type
1536330 Optics Communications 2012 10 Pages PDF
Abstract

We consider the nonlinear dynamics of multiwavelength laser cavities with saturable transmitter and saturating homogeneous gain using a simple and general discrete model. Saturable transmitter is an intensity dependent loss in which the transmittance decreases when the incident optical power increases. We determine the condition under which the saturable transmitter will generate behaviors such as stable steady-state lasing states, periodic lasing states, and chaotic lasing states. Indeed, for sufficiently large power, steady-state operation is first destabilized through a Hopf bifurcation which generates periodic lasing solutions. This is followed by a sequence of period doubling bifurcations to chaotic lasing. The bifurcation structure leading to chaos is characterized by three key methods of dynamical systems: a Feigenbaum series, the calculation of Lyapunov exponents and the computation of the correlation dimension of the system. We found that even single wavelength operation can exhibit complex nonlinear dynamics if the loss element is a saturable transmitter.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,