Article ID Journal Published Year Pages File Type
1536635 Optics Communications 2012 5 Pages PDF
Abstract

We propose that spectral intensity of superconductor based random lasers can be made tunable by changing temperature. The two fluid model and wavelength dependent dispersion formula have been employed to describe the optical response of the superconducting materials. Random laser characteristics have been calculated using the one dimensional FDTD method. Our simulation results reveal that the emission spectrum can be manipulated through the ambient temperature of the system. It is observed that transition from metal phase to pure superconducting phase leads to the enhancement of the laser emission. Furthermore, spatial distribution of the fields in one dimensional disordered media is very sensitive to the system temperature.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,