Article ID Journal Published Year Pages File Type
1536887 Optics Communications 2012 6 Pages PDF
Abstract

Soliton molecules evolution is numerically investigated in a passively mode-locked fiber laser based on the nonlinear polarization rotation (NPR) technique. Peak-to-peak separation of soliton molecules can be controlled by changing either pump strength or cavity linear phase delay appropriately. Moreover, soliton molecules with intensity-independent evolution, separation-independent evolution and large intensity-vibrating evolution are numerically found, respectively. The characteristics of soliton molecules evolution versus linear phase delay or pump strength are given. Periodic stable evolution regimes are found. The separation-controllable soliton molecules can be attributed to the mutual effects of phase delay, Kerr nonlinearity and other parameters of the cavity.

Keywords
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , , , , , , ,