Article ID Journal Published Year Pages File Type
1536915 Optics Communications 2011 6 Pages PDF
Abstract

The use of frequency-shifted feedback (FSF) lasers in optical metrology is based on a unique coherence property: the appearance of beats in the noise spectrum at the output of a two-beam interferometer, whose frequencies vary linearly with the path delay of the interferometer. A description of the output of a FSF laser as a moving comb of optical frequencies is generally admitted to explain these specific coherence properties. Here starting from the model of a passive FSF cavity seeded by spontaneous emission we give a rigorous description of the time-spectrum properties of FSF lasers and show that the moving comb exists only in the limit of small frequency shift.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , ,