Article ID Journal Published Year Pages File Type
1537028 Optics Communications 2011 6 Pages PDF
Abstract
Propagation of a Gaussian beam in an absorbing waveguide is analyzed for cubic-quintic and saturable media taking into account both linear and nonlinear absorption. A “collective variable approach” technique, based on trial functions, is used to solve the general nonlinear Schrodinger equation. In the absence of losses, we construct a diagram which defines regions of oscillatory and diffractive beam propagation for both types of media, and also a diagram that compares bistable behavior in such media. We show that if the linear and nonlinear absorption coefficients are small, the behavior of the oscillations of the beam width on propagation allows one to distinguish between cubic-quintic and saturable media. By reversing the sign of the linear absorption, we analyze the behavior of the beam propagation in media with gain and nonlinear absorption. In cubic-quintic media, the energy reaches a plateau for certain ratios of gain to losses, whereas for saturable media, the energy increases throughout the beam propagation.
Keywords
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,