Article ID Journal Published Year Pages File Type
1537353 Optics Communications 2011 4 Pages PDF
Abstract

A monolithic silicon CMOS optoelectronic integrated circuit (OEIC) is designed and fabricated using standard 0.35-μm CMOS technology. This OEIC monolithically integrates light emitting diode (LED), silicon dioxide waveguide, photodetector and receiver circuit on a single silicon chip. The silicon LED operates in reverse breakdown mode and can emit light at 8.5 V. The output optical power is 31.2 nW under 9.8 V reverse bias. The measured spectrum of LED showed two peaks at 760 nm and 810 nm, respectively. The waveguide is composed of silicon dioxide/metal multiple layers. The responsivity of the n-well/p-substrate diode photodetector is 0.42 A/W and the dark current is 7.8 pA. The LED-emitted light transmits through the waveguide and can be detected by the photodetector. Experimental results show that on-chip optical interconnects are achieved by standard CMOS technology successfully.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , ,