Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1537384 | Optics Communications | 2011 | 5 Pages |
We propose a novel optofluidic biosensor in which detection is based on a shift in the transmission spectrum due to the contrast in refractive index between the carrier fluid and the target biomaterial. The sensor can function using focused illumination without the need for fiber or waveguide coupled input/output signals. We study the spectral response of the sensor using 2D full-wave time-harmonic field analysis and perform parametric analysis of detection sensitivity as a function of material and device parameters. Our analysis demonstrates that detectible shifts in the transmission spectrum can be achieved with nanoscale accumulation of biomaterial within the sensor. We show that the transmission minima and detection sensitivity can be estimated using analytical expressions based on a 1D antiresonant waveguide model.