Article ID Journal Published Year Pages File Type
1537572 Optics Communications 2010 4 Pages PDF
Abstract

We present a new fiber-optic refractive-index sensor based on a fiber modal interferometer constituted by a thin-core optical fiber, whose cut-off wavelength is around three times shorter than normal single-mode fiber. In such a core diameter mismatching structure, the high-order cladding modes are efficiently excited and interfere with the core mode to form a high extinction-ratio filter (>30 dB). Both transmissive and reflective thin-core fiber modal interferometers are experimentally demonstrated, and show a high sensitivity to a small change of external refractive-index (>100 nm/R.I.U.), but a low sensitivity to the change of temperature (<0.015 nm/°C). Such a fiber device possesses an extremely simple structure, but excellent refractive-index sensing properties, and thus is an ideal candidate for fiber-optic biochemical sensing applications.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,