Article ID Journal Published Year Pages File Type
1537877 Optics Communications 2011 5 Pages PDF
Abstract

The transmission of p-polarized plane wave through Ag/SiO2 multilayer films perforated with periodic subwavelength air slits is investigated by using the finite-difference time-domain (FDTD) method. The results show that the optical transmission property is mediated by the interference among the propagating coupled-SPP modes along the lateral direction inside the SiO2 layers and the conditions of Fabry–Pérot–like resonance along the longitudinal direction together. When some geometric parameters are suitably initialized, the high transmission peaks can split into more peaks as the functional layer (metal/dielectric/metal sandwich stack) number increases, and the wavelength of the same-order transmission peak exhibits a red shift as the grating period increases.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , ,