Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1538508 | Optics Communications | 2011 | 6 Pages |
Smart materials with reversible tunable optical constants from visible to near-infrared wavelengths could enable excellent control over the resonant response in metamaterials, tunable plasmonic nanostructures, optical memory based on phase transition and thermally tunable optical devices. Vanadium dioxide (VO2) is a promising candidate that exhibits a dramatic change in its complex refraction index or complex dielectric function arising from a structural phase transition from semiconductor to metal at a critical temperature of 70 °C. We demonstrated the thermal controllable reversible tunability of optical constants of VO2 thin films. The optical/dielectric constants showed an abrupt thermal hysteresis which confirms clearly the electronic structural changes. Temperature dependence of dielectric constants as well as optical conductivity of sputtered VO2 thin films was also reported and compared to previous theoretical and experimental reports.