Article ID Journal Published Year Pages File Type
1538531 Optics Communications 2009 10 Pages PDF
Abstract

An approximation to a Bessel beam produced by tightly focusing linearly polarized light is known to produce a smaller central lobe than focusing plane polarized light. This is because the plane polarized wave gives a broad central lobe caused mainly by a parasitic longitudinal field component. It is known that this problem can be overcome by focusing radially polarized light. Here we demonstrate that other polarization distributions based on a linear combination of transverse electric (TE1) and transverse magnetic (TM1) fields can give a beam even narrower than for the radially polarized case. Special cases of this combination are identified, corresponding to the smallest width (TE1), and the maximum peak intensity compared with the side lobes (electric dipole polarization). Axially-symmetric forms can be generated by illumination with elliptically polarized light. A particular case is azimuthal polarization with a phase singularity, which is equivalent to TE1. For a semi-angular aperture of 60°, the TE1 case gives a central lobe width 9% narrower than for radially polarized illumination, while for plane polarized illumination it is 12% wider than the radially polarized case.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , ,