Article ID Journal Published Year Pages File Type
1538652 Optics Communications 2010 7 Pages PDF
Abstract

We have performed systematic first principle calculations for the electronic and optical properties of a narrow band gap semiconductor InN in cubic and wurtzite phases by ‘state-of-the-art’ DFT calculations within generalized gradient approximation (GGA) and Engel–Vosko's corrected generalized gradient approximation (EVGGA) using full potential linear augmented plane wave (FPLAPW) method as implemented in WIEN2k code. The total energy for the wurtzite phase of InN was found to be smaller by 0.0184 Ry/molecule by cubic phase which confirms the greater stability of the wurtzite structure than the cubic one. Band structure, effective masses, density of states, valence charge densities, and dielectric functions are computed and presented in detail. The critical points are extracted out of calculated dielectric function, compared with available measured data and are explained in terms of transitions occurred in the band structure along different symmetry and antisymmetry lines. The valence band maxima and conduction band minima are strongly dominated by N-2p states and located at the Γ-symmetrical line which predicts its direct band gap nature in both phases.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,