Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1538943 | Optics Communications | 2007 | 8 Pages |
Abstract
An efficient and accurate three-dimensional (3D) hybrid modeling, which combines a 3D beam propagation method (BPM) and the two-dimensional (2D) Kirchhoff-Huygens diffraction formula, is developed to simulate the field propagation in an arrayed waveguide grating (AWG) demultiplexer. The 2D Kirchhoff-Huygens diffraction formula is used for the simulation of the light propagation in the free propagation regions (FPRs). A 3D BPM in a polar coordinate system is used to simulate the light propagation in the transition region between the input FPR and the arrayed waveguides so that the coupling coefficients for the arrayed waveguides are calculated conveniently and accurately. For the simulation in the transition region between the arrayed waveguides and the output FPR, only the central arrayed waveguide and several adjacent ones are needed in the computational window of a standard BPM and thus the computation efficiency is improved. Finally, a flat-top AWG is designed and fabricated to verify the reliability of the present simulation method. The calculated and measured spectral responses are in a good agreement.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Electronic, Optical and Magnetic Materials
Authors
Daoxin Dai, Liu Liu, Sailing He,