Article ID Journal Published Year Pages File Type
1539088 Optics Communications 2009 6 Pages PDF
Abstract

Buffer performance of a 2.5 Gb/s bit stream with non-return-to-zero format is investigated based on acoustic excitation by stimulated Brillouin scattering in an As2Se3 fiber. The storage process and the retrieval process of the bit stream are separately controlled by a “Write” pulse and a “Read” pulse. The research results show that the output signal-to-noise ratio and the readout efficiency of the buffer are agreeable, and the pulse distortion is low, if both the “Write” and the “Read” pulses are with high enough peak power and spectrum wider than that of the signal pulse. Buffering of a consecutive 10-bit-long 2.5 Gb/s NRZ bit stream has also been demonstrated in the As2Se3 fiber with length of only 0.5 m. The storage of a long bit stream, such as the data packet containing about 1000 bits in the telecommunications, is limited by the high loss in the As2Se3 fiber. However, the development of the special optical fiber with high Brillouin gain coefficient, long acoustic lifetime and low loss can make this technology applicable for all-optical buffering in high speed optical networks.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , ,