Article ID Journal Published Year Pages File Type
1539160 Optics Communications 2009 4 Pages PDF
Abstract

The cooling effects of a nonlinear quantum oscillator via its interaction with an artificial atom (qubit) are investigated. The quantum dissipations through the environmental reservoir of the nonlinear oscillator are included, taking into account the nonlinearity of the qubit–oscillator interaction. For appropriate bath temperatures and the resonator’s quality factors, we demonstrate effective cooling below the thermal background. As the photon coherence functions behave differently for even and odd photon number states, we describe a mechanism distinguishing those states. The analytical formalism developed is general and can be applied to a wide range of systems.

Keywords
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,