Article ID Journal Published Year Pages File Type
1539285 Optics Communications 2009 13 Pages PDF
Abstract

This study deals with the interpretation of experimental Mueller matrices. The understanding of such a matrix is not straightforward in the case, in particular, of a strongly depolarizing medium, which is therefore disturbed and where relevant pieces of information are often distributed among its various elements. As a result, information data need to be extracted by a decomposition of any Mueller matrix into simple elements to uncouple the existing polarimetric effects. This led us to develop an algorithm in order to characterize any depolarizing, or not, polarimetric system. In addition to differentiating the experimental noise from the intrinsic depolarization of the optical system under study, this algorithm proved to: (i) separate depolarization from birefringence and dichroism and (ii) characterize the isotropic or anisotropic nature of the depolarization. At last, this algorithm was validated through the study of several optical systems with different polarimetric properties.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , ,